Als Albert Einstein 1915/16 seine allgemeine Relativitätstheorie (AR) veröffentlichte, schlug er drei Tests vor, die mittels astronomischer Beobachtungen die Gültigkeit seiner Theorie überprüfen sollten: die Periheldrehung des Merkur, die Rotverschiebung der Spektrallinien von Sternen und die Lichtablenkung im Feld der Sonne.
Diese drei Experimente testen jedoch die AR in Bereichen, in denen die Gravitationsfelder schwach sind und die Raumzeit daher nur wenig von einer flachen Raumzeit abweicht. Erst etwa 60 Jahre nach der Publikation der AR gelang die Entdeckung eines Systems, bestehend aus zwei Neutronensternen, das die Untersuchung der AR in einer Raumzeit mit starken Gravitationsfeldern erlaubte. Mit Hilfe dieses Doppelstern-Pulsars, dessen Entdeckung mit dem Nobelpreis für Physik 1993 gewürdigt wurde, gelang zum ersten Mal ein (indirekter) Nachweis der Existenz von Gravitationswellen.
Inzwischen wurden weitere Doppelstern-Pulsare entdeckt, die noch bessere Tests der AR und alternativer Gravitationstheorien erlauben. In naher Zukunft wird es wohl möglich sein, die Gravitationswellen supermassereicher Schwarzer Löcher mit Hilfe von Pulsaren direkt nachzuweisen.
Der Vortrag gibt einen Überblick über dieses spannende Gebiet der modernen Gravitationsphysik.
Norbert Wex studierte Physik und Astronomie an der Ludwig-Maximilians-Universität in München und promovierte anschliessend in der Max-Planck-Arbeitsgruppe "Gravitationstheorie" an der Friedrich-Schiller-Universität Jena. Er war als Gastwissenschaftler tätig am "Research Centre for Theoretical Astrophysics" der Universität Sydney, in der Pulsar-Gruppe von Joseph H. Taylor Jr. an der Universität Princeton und von 1998 bis 2000 als Wissenschaftlicher Mitarbeiter in der Forschungsgruppe "Radiokontinuum" am Max-Planck-Institut für Radioastronomie in Bonn. Seit Mai 2009 ist er Wissenschaftlicher Mitarbeiter in der Forschungsgruppe "Radioastronomische Fundamentalphysik" am Max-Planck-Institut für Radioastronomie in Bonn.
Für seine Arbeiten wurde er mit dem Promotionspreis der Friedrich-Schiller-Universität Jena und der Otto-Hahn-Medaille der Max-Planck-Gesellschaft ausgezeichnet.
Zu seine Forschungsgebieten zählen die Allgemeine Relativitätstheorie, Alternative Gravitationstheorien, Pulsare, Tests von Gravitationstheorien mit Hilfe von Pulsaren, Gravitationswellen und Schwarze Löcher.